Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.992
Filtrar
1.
Front Immunol ; 15: 1375433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576614

RESUMO

Oncolytic virus (OV) therapy has emerged as a promising frontier in cancer treatment, especially for solid tumours. While immunotherapies like immune checkpoint inhibitors and CAR-T cells have demonstrated impressive results, their limitations in inducing complete tumour regression have spurred researchers to explore new approaches targeting tumours resistant to current immunotherapies. OVs, both natural and genetically engineered, selectively replicate within cancer cells, inducing their lysis while sparing normal tissues. Recent advancements in clinical research and genetic engineering have enabled the development of targeted viruses that modify the tumour microenvironment, triggering anti-tumour immune responses and exhibiting synergistic effects with other cancer therapies. Several OVs have been studied for breast cancer treatment, including adenovirus, protoparvovirus, vaccinia virus, reovirus, and herpes simplex virus type I (HSV-1). These viruses have been modified or engineered to enhance their tumour-selective replication, reduce toxicity, and improve oncolytic properties.Newer generations of OVs, such as Oncoviron and Delta-24-RGD adenovirus, exhibit heightened replication selectivity and enhanced anticancer effects, particularly in breast cancer models. Clinical trials have explored the efficacy and safety of various OVs in treating different cancers, including melanoma, nasopharyngeal carcinoma, head and neck cancer, and gynecologic malignancies. Notably, Talimogene laherparepvec (T-VEC) and Oncorine have. been approved for advanced melanoma and nasopharyngeal carcinoma, respectively. However, adverse effects have been reported in some cases, including flu-like symptoms and rare instances of severe complications such as fistula formation. Although no OV has been approved specifically for breast cancer treatment, ongoing preclinical clinical trials focus on four groups of viruses. While mild adverse effects like low-grade fever and nausea have been observed, the effectiveness of OV monotherapy in breast cancer remains insufficient. Combination strategies integrating OVs with chemotherapy, radiotherapy, or immunotherapy, show promise in improving therapeutic outcomes. Oncolytic virus therapy holds substantial potential in breast cancer treatment, demonstrating safety in trials. Multi-approach strategies combining OVs with conventional therapies exhibit more promising therapeutic effects than monotherapy, signalling a hopeful future for OV-based breast cancer treatments.


Assuntos
Neoplasias da Mama , Melanoma , Neoplasias Nasofaríngeas , Terapia Viral Oncolítica , Vírus Oncolíticos , Feminino , Humanos , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Melanoma/terapia , Vírus Oncolíticos/genética , Neoplasias da Mama/terapia , Neoplasias da Mama/etiologia , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Microambiente Tumoral
2.
Math Biosci Eng ; 21(3): 3876-3909, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38549312

RESUMO

Bortezomib and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts protein degradation in cells, leading to the accumulation of unfolded proteins that induce apoptosis. On the other hand, virotherapy uses genetically modified oncolytic viruses (OVs) to infect cancer cells, trigger cell lysis, and activate anti-tumor response. Despite progress in cancer treatment, identifying administration protocols for therapeutic agents remains a significant concern, aiming to strike a balance between efficacy, minimizing toxicity, and administrative costs. In this work, optimal control theory was employed to design a cost-effective and efficient co-administration protocols for bortezomib and OVs that could significantly diminish the population of cancer cells via the cell death program with the NF$ \kappa $B-BAX-RIP1 signaling network. Both linear and quadratic control strategies were explored to obtain practical treatment approaches by adapting necroptosis protocols to efficient cell death programs. Our findings demonstrated that a combination therapy commencing with the administration of OVs followed by bortezomib infusions yields an effective tumor-killing outcome. These results could provide valuable guidance for the development of clinical administration protocols in cancer treatment.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Morte Celular
3.
Front Immunol ; 15: 1343378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464532

RESUMO

Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Terapia Viral Oncolítica/métodos , Linfócitos T , Vírus Oncolíticos/genética , Neoplasias/patologia , Citocinas/metabolismo , Microambiente Tumoral
4.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474178

RESUMO

This review article provides a comprehensive overview of a novel Sindbis virus vaccine platform as potential immunotherapy for ovarian cancer patients. Ovarian cancer is the most lethal of all gynecological malignancies. The majority of high-grade serous ovarian cancer (HGSOC) patients are diagnosed with advanced disease. Current treatment options are very aggressive and limited, resulting in tumor recurrences and 50-60% patient mortality within 5 years. The unique properties of armed oncolytic Sindbis virus vectors (SV) in vivo have garnered significant interest in recent years to potently target and treat ovarian cancer. We discuss the molecular biology of Sindbis virus, its mechanisms of action against ovarian cancer cells, preclinical in vivo studies, and future perspectives. The potential of Sindbis virus-based therapies for ovarian cancer treatment holds great promise and warrants further investigation. Investigations using other oncolytic viruses in preclinical studies and clinical trials are also presented.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Vacinas , Humanos , Feminino , Vírus Sindbis , Terapia Viral Oncolítica/métodos , Recidiva Local de Neoplasia/terapia , Neoplasias Ovarianas/patologia , Imunoterapia/métodos
5.
Virology ; 593: 110033, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442508

RESUMO

Glioma is a diverse category of tumors originating from glial cells encompasses various subtypes, based on the specific type of glial cells involved. The most aggressive is glioblastoma multiforme (GBM), which stands as the predominant primary malignant tumor within the central nervous system in adults. Despite the application of treatment strategy, the median survival rate for GBM patients still hovers around 15 months. Oncolytic viruses (OVs) are artificially engineered viruses designed to selectively target and induce apoptosis in cancer cells. While clinical trials have demonstrated encouraging results with intratumoral OV injections for some cancers, applying this approach to GBM presents unique challenges. Here we elaborate on current trends in oncolytic viral therapy and their delivery methods. We delve into the various methods of delivering OVs for therapy, exploring their respective advantages and disadvantages and discussing how selecting the optimal delivery method can enhance the efficacy of this innovative treatment approach.


Assuntos
Glioblastoma , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Adulto , Humanos , Terapia Viral Oncolítica/métodos , Glioma/terapia , Vírus Oncolíticos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Apoptose
6.
PLoS One ; 19(3): e0298437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498459

RESUMO

Ionizing radiation (IR) and oncolytic viruses are both used to treat cancer, and the effectiveness of both agents depends upon stimulating an immune response against the tumor. In this study we tested whether combining image guided ionizing radiation (IG-IR) with an oncolytic vaccinia virus (VACV) could yield a better therapeutic response than either treatment alone. ΔF4LΔJ2R VACV grew well on irradiated human and mouse breast cancer cells, and the virus can be combined with 4 or 8 Gy of IR to kill cells in an additive or weakly synergistic manner. To test efficacy in vivo we used immune competent mice bearing orthotopic TUBO mammary tumors. IG-IR worked well with 10 Gy producing 80% complete responses, but this was halved when the tumors were treated with VACV starting 2 days after IG-IR. VACV monotherapy was ineffective in this model. The antagonism was time dependent as waiting for 21 days after IG-IR eliminated the inhibitory effect but without yielding any further benefits over IR alone. In irradiated tumors, VACV replication was also lower, suggesting that irradiation created an environment that did not support infection as well in vivo as in vitro. A study of how four different treatment regimens affected the immune composition of the tumor microenvironment showed that treating irradiated tumors with VACV altered the immunological profiles in tumors exposed to IR or VACV alone. We detected more PD-1 and PD-L1 expression in tumors exposed to IR+VACV but adding an αPD-1 antibody to the protocol did not change the way VACV interferes with IG-IR therapy. VACV encodes many immunosuppressive gene products that may interfere with the ability of radiotherapy to induce an effective anti-tumor immune response through the release of danger-associated molecular patterns. These data suggest that infecting irradiated tumors with VACV, too soon after exposure, may interfere in the innate and linked adaptive immune responses that are triggered by radiotherapy to achieve a beneficial impact.


Assuntos
Neoplasias Mamárias Animais , Terapia Viral Oncolítica , Vírus Oncolíticos , Radioterapia Guiada por Imagem , Vaccinia , Humanos , Animais , Camundongos , Vírus Vaccinia/genética , Vírus Oncolíticos/genética , Neoplasias Mamárias Animais/radioterapia , Imunoterapia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral
7.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458640

RESUMO

BACKGROUND: The redundant extracellular matrix (ECM) within tumor microenvironment (TME) such as hyaluronic acid (HA) often impairs intratumoral dissemination of antitumor drugs. Oncolytic viruses (OVs) are being studied extensively for cancer therapy either alone or in conjunction with chemotherapy and immunotherapy. Here, we designed a novel recombinant vaccinia virus encoding a soluble version of hyaluronidase Hyal1 (OVV-Hyal1) to degrade the HA and investigated its antitumor effects in combination with chemo drugs, polypeptide, immune cells, and antibodies. METHODS: We constructed a recombinant oncolytic vaccinia virus encoding the hyaluronidase, and investigated its function in remodeling the ECM of the TME, the antitumor efficacy both in vitro and in several murine solid tumors either alone, or in combination with chemo drugs including doxorubicin and gemcitabine, with polypeptide liraglutide, with immune therapeutics such as PD-L1/PD-1 blockade, CD47 antibody, and with CAR-T cells. RESULTS: Compared with control OVV, intratumoral injection of OVV-Hyal1 showed superior antitumor efficacies in a series of mouse subcutaneous tumor models. Moreover, HA degradation by OVV-Hyal1 resulted in increased intratumoral dissemination of chemo drugs, infiltration of T cells, NK cells, macrophages, and activation of CD8+ T cells. When OVV-Hyal1 was combined with some antitumor therapeutics, for example, doxorubicin, gemcitabine, liraglutide, anti-PD-1, anti-CD47 blockade, or CAR-T cells, more profound therapeutic outcomes were obtained. CONCLUSIONS: OVV-Hyal1 effectively degrades HA to reshape the TME, therefore overcoming some major hurdles in current cancer therapy, such as limited OVs spread, unfavored dissemination of chemo drugs, polypeptides, antibodies, and insufficient infiltration of effector immune cells. OVV-Hyal1 holds the promise to improve the antitumor outcomes of current cancer therapeutics.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Vírus Oncolíticos/genética , Vírus Vaccinia/genética , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/farmacologia , Terapia Viral Oncolítica/métodos , Gencitabina , Linfócitos T CD8-Positivos , Liraglutida/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia/métodos , Modelos Animais de Doenças , Peptídeos/farmacologia , Matriz Extracelular/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Microambiente Tumoral
8.
Cancer Lett ; 588: 216760, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428724

RESUMO

Oncolytic viruses have emerged as a promising modality for cancer treatment due to their unique abilities to directly destroy tumor cells and modulate the tumor microenvironment. Bispecific T-cell engagers (BsAbs) have been developed to activate and redirect cytotoxic T lymphocytes, enhancing the antitumor response. To take advantage of the specific infection capacity and carrying ability of exogenous genes, we generated a recombinant herpes simplex virus type 1 (HSV-1), HSV-1dko-B7H3nb/CD3 or HSV-1dko-B7H3nb/mCD3, carrying a B7H3nb/CD3 or B7H3nb/mCD3 BsAb that replicates and expresses BsAb in tumor cells in vitro and in vivo. The new generation of oncolytic viruses has been genetically modified using CRISPR/Cas9 technology and the cre-loxp system to increase the efficiency of HSV genome editing. Additionally, we used two fully immunocompetent models (GL261 and MC38) to assess the antitumor effect of HSV-1dko-B7H3nb/mCD3. Compared with the HSV-1dko control virus, HSV-1dko-B7H3nb/mCD3 induced enhanced anti-tumor immune responses and T-cell infiltration in both GL261 and MC38 models, resulting in improved treatment efficacy in the latter. Furthermore, flow cytometry analysis of the tumor microenvironment confirmed an increase in NK cells and effector CD8+ T cells, and a decrease in immunosuppressive cells, including FOXP3+ regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and CD206+ macrophages (M2). Overall, our study identified a novel camel B7H3 nanobody and described the genetic modification of the HSV-1 genome using CRISPR/Cas9 technology and the cre-loxp system. Our findings indicate that expressing B7H3nb/CD3 BsAb could improve the antitumor effects of HSV-1 based oncolytic virus.


Assuntos
Herpesvirus Humano 1 , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Herpesvirus Humano 1/genética , Linfócitos T CD8-Positivos , Vírus Oncolíticos/genética , Neoplasias/genética , Terapia Viral Oncolítica/métodos , Microambiente Tumoral
9.
Hum Gene Ther ; 35(5-6): 177-191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38386514

RESUMO

Oncolytic viruses (OVs) are appealing anti-tumor agents. But it is limited in its effectiveness. In this study, we used combination therapy with immune checkpoint inhibitor to enhance the antitumor efficacy of OVs. Using reverse genetics technology, we rescued an oncolytic influenza virus with the name delNS1-GM-CSF from the virus. After identifying the hemagglutination and 50% tissue culture infectivedose (TCID50) of delNS1-GM-CSF, it was purified, and the viral morphology was observed under electron microscopy. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) was used to identify the level of GM-CSF expression in delNS1-GM-CSF, and the GM-CSF expression level was determined after infection with delNS1-GM-CSF by enzyme linked immunosorbent assay (ELISA). To study the tumor-killing effect of delNS1-GM-CSF, we utilized the hepatocellular carcinoma (HCC) tumor-bearing mouse model. To examine signaling pathways, we performed transcriptome sequencing on mouse tumor tissue and applied western blotting to confirm the results. Changes in T-cell infiltration in HCC tumors following treatment were analyzed using flow cytometry and immunohistochemistry. DelNS1-GM-CSF can target and kill HCCs without damaging normal hepatocytes. DelNS1-GM-CSF combined with programmed cell death 1 blockade therapy enhanced anti-tumor effects and significantly improved mouse survival. Further, we found that combination therapy had an antitumor impact via the janus kinase-signal transducer and activator of transcription (JAK2-STAT3) pathway as well as activated CD4+ and CD8+T cells. Interestingly, combined therapy also showed promising efficacy in distant tumors. DelNS1-GM-CSF is well targeted. Mechanistic investigation revealed that it functions through the JAK2-STAT3 pathway. Combination immunotherapies expected to be a novel strategy for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Influenza Humana , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Humanos , Vírus Oncolíticos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Imunoterapia/métodos , Apoptose , Linhagem Celular Tumoral , Terapia Viral Oncolítica/métodos
10.
Cancer Sci ; 115(4): 1129-1140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351514

RESUMO

Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/fisiologia , Vírus Vaccinia/fisiologia , Neutrófilos/patologia , Terapia Viral Oncolítica/métodos , Fosfatidilinositol 3-Quinases , Neoplasias/patologia , Microambiente Tumoral
11.
Curr Microbiol ; 81(4): 93, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334775

RESUMO

The measles vaccine virus strain (MV-Edm) serves as a potential platform for the development of effective oncolytic vectors. Nevertheless, despite promising pre-clinical data, our comprehension of the factors influencing the efficacy of MV-Edm infection and intratumoral spread, as well as the interactions between oncolytic viruses and specific chemotherapeutics associated with viral infection, remains limited. Therefore, we investigated the potency of Forskolin in enhancing the antitumor effect of oncolytic MV-Edm by promoting the Rab27a-dependent vesicular transport system. After infecting cells with MV-Edm, we observed an increased accumulation of cytoplasmic vesicles. Our study demonstrated that MV-Edm infection and spread in tumors, which are indispensable processes for viral oncolysis, depend on the vesicular transport system of tumor cells. Although tumor cells displayed a responsive mechanism to restrain the MV-Edm spread by down-regulating the expression of Rab27a, a key member of the vesicle transport system, over-expression of Rab27a promoted the oncolytic efficacy of MV-Edm towards A549 tumor cells. Additionally, we found that Forskolin, a Rab27a agonist, was capable of promoting the oncolytic effect of MV-Edm in vitro. Our study revealed that the vesicle transporter Rab27a could facilitate the secretion of MV-Edm and the generation of syncytial bodies in MV-Edm infected cells during the MV-Edm-mediated oncolysis pathway. The results of the study demonstrate that a combination of Forskolin and MV-Edm exerts a synergistic anti-tumor effect in vitro, leading to elevated oncolysis. This finding holds promise for the clinical treatment of patients with tumors.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Linhagem Celular Tumoral , Colforsina/farmacologia , Vírus do Sarampo/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
12.
PLoS One ; 19(2): e0298292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38377118

RESUMO

Bone and soft-tissue sarcomas are rare malignancies with histological diversity and tumor heterogeneity, leading to the lack of a common molecular target. Telomerase is a key enzyme for keeping the telomere length and human telomerase reverse transcriptase (hTERT) expression is often activated in most human cancers, including bone and soft-tissue sarcomas. For targeting of telomerase-positive tumor cells, we developed OBP-301, a telomerase-specific replication-competent oncolytic adenovirus, in which the hTERT promoter regulates adenoviral E1 gene for tumor-specific viral replication. In this study, we present the diagnostic potential of green fluorescent protein (GFP)-expressing oncolytic adenovirus OBP-401 for assessing virotherapy sensitivity using bone and soft-tissue sarcomas. OBP-401-mediated GFP expression was significantly associated with the therapeutic efficacy of OBP-401 in human bone and soft-tissue sarcomas. In the tumor specimens from 68 patients, malignant and intermediate tumors demonstrated significantly higher expression levels of coxsackie and adenovirus receptor (CAR) and hTERT than benign tumors. OBP-401-mediated GFP expression was significantly increased in malignant and intermediate tumors with high expression levels of CAR and hTERT between 24 and 48 h after infection. Our results suggest that the OBP-401-based GFP expression system is a useful tool for predicting the therapeutic efficacy of oncolytic virotherapy on bone and soft-tissue sarcomas.


Assuntos
Infecções por Adenoviridae , Terapia Viral Oncolítica , Sarcoma , Neoplasias de Tecidos Moles , Telomerase , Humanos , Adenoviridae/fisiologia , Telomerase/genética , Telomerase/metabolismo , Fluorescência , Terapia Viral Oncolítica/métodos , Sarcoma/terapia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Linhagem Celular Tumoral
13.
Life Sci ; 341: 122506, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38373620

RESUMO

Most human malignancies are attributed to exposure to infectious organisms such as viruses. Certain infections that can induce cancer can evade the immune system, leading to persistent inflammation that facilitates uncontrolled cell growth. Moreover, these pathogens can increase the likelihood of oncogenic transformation, leading to cancer development. Despite significant advancements in medicine, oncological research continues to seek innovative treatment techniques in light of the constraints imposed by traditional therapeutic agents. Virus-based therapy is a novel treatment method that has garnered significant interest due to its broad range of applications. Virotherapy employs oncolytic viruses that are genetically modified to target tumor cells specifically, undergo replication inside them and destroy the malignant cells. Additionally, this therapeutic approach elicits an anticancer response by boosting the patient's immune system. In addition, viruses are commonly employed as targeted delivery vectors for the precise transportation of various genes, medicinal compounds and immune-stimulating substances. Furthermore, virotherapy offers more excellent anticancer activity in combination with established treatment modalities such as immune therapy, chemotherapy and radiation therapy. This review presents a concise overview of the roles played by infectious agents, such as viruses in cancer progression. In addition, we have thoroughly summarized the advancements in utilizing viruses for their oncolytic properties in conjunction with established cancer treatment modalities such as chemotherapy, radiation and immunotherapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Terapia Viral Oncolítica/métodos , Neoplasias/terapia , Neoplasias/patologia , Imunoterapia/métodos
14.
Cells ; 13(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38391964

RESUMO

Osteosarcoma (OS) is a primary bone malignancy characterized by an aggressive nature, limited treatment options, low survival rate, and poor patient prognosis. Conditionally replicative adenoviruses (CRAds) armed with immune checkpoint inhibitors hold great potential for enhanced therapeutic efficacy. The present study aims to investigate the anti-tumor efficacy of CAV2-AU-M2, a CAV2-based CRAd armed with an anti-PD-1 single-domain antibody (sdAb), against OS cell lines in vitro. The infection, conditional replication, cytopathic effects, and cytotoxicity of CAV2-AU-M2 were tested in four different OS cell lines in two-dimensional (2D) and three-dimensional (3D) cell cultures. CAV2-AU-M2 showed selective replication in the OS cells and induced efficient tumor cell lysis and death. Moreover, CAV2-AU-M2 produced an anti-PD-1 sdAb that demonstrated effective binding to the PD-1 receptors. This study demonstrated the first CRAd armed with an anti-PD-1 sdAb. This combined approach of two distinct immunotherapies is intended to enhance the anti-tumor immune response in the tumor microenvironment.


Assuntos
Neoplasias Ósseas , Terapia Viral Oncolítica , Vírus Oncolíticos , Osteossarcoma , Anticorpos de Domínio Único , Humanos , Terapia Viral Oncolítica/métodos , Osteossarcoma/terapia , Neoplasias Ósseas/terapia , Microambiente Tumoral
15.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279262

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive type of pancreatic cancer, which rapidly develops resistance to the current standard of care. Several oncolytic Human AdenoViruses (HAdVs) have been reported to re-sensitize drug-resistant cancer cells and in combination with chemotherapeutics attenuate solid tumour growth. Obstacles preventing greater clinical success are rapid hepatic elimination and limited viral replication and spread within the tumour microenvironment. We hypothesised that higher intratumoural levels of the virus could be achieved by altering cellular epigenetic regulation. Here we report on the screening of an enriched epigenetics small molecule library and validation of six compounds that increased viral gene expression and replication. The greatest effects were observed with three epigenetic inhibitors targeting bromodomain (BRD)-containing proteins. Specifically, BRD4 inhibitors enhanced the efficacy of Ad5 wild type, Ad∆∆, and Ad-3∆-A20T in 3-dimensional co-culture models of PDAC and in vivo xenografts. RNAseq analysis demonstrated that the inhibitors increased viral E1A expression, altered expression of cell cycle regulators and inflammatory factors, and attenuated expression levels of tumour cell oncogenes such as c-Myc and Myb. The data suggest that the tumour-selective Ad∆∆ and Ad-3∆-A20T combined with epigenetic inhibitors is a novel strategy for the treatment of PDAC by eliminating both cancer and associated stromal cells to pave the way for immune cell access even after systemic delivery of the virus.


Assuntos
Carcinoma Ductal Pancreático , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Humanos , Proteínas Nucleares/genética , Epigênese Genética , Vírus Oncolíticos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Terapia Viral Oncolítica/métodos , Adenoviridae/genética , Microambiente Tumoral , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
16.
Mol Ther ; 32(2): 440-456, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38213031

RESUMO

Here we introduce a first-in-class microRNA-sensitive oncolytic Zika virus (ZIKV) for virotherapy application against central nervous system (CNS) tumors. The described methodology produced two synthetic modified ZIKV strains that are safe in normal cells, including neural stem cells, while preserving brain tropism and oncolytic effects in tumor cells. The microRNA-sensitive ZIKV introduces genetic modifications in two different virus sites: first, in the established 3'UTR region, and secondly, in the ZIKV protein coding sequence, demonstrating for the first time that the miRNA inhibition systems can be functional outside the UTR RNA sites. The total tumor remission in mice bearing human CNS tumors, including metastatic tumor growth, after intraventricular and systemic modified ZIKV administration, confirms the promise of this virotherapy as a novel agent against brain tumors-highly deadly diseases in urgent need of effective advanced therapies.


Assuntos
Neoplasias do Sistema Nervoso Central , MicroRNAs , Terapia Viral Oncolítica , Vírus Oncolíticos , Infecção por Zika virus , Zika virus , Humanos , Camundongos , Animais , Vírus Oncolíticos/genética , Zika virus/genética , MicroRNAs/genética , Infecção por Zika virus/terapia , Terapia Viral Oncolítica/métodos
17.
Nat Commun ; 15(1): 131, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167409

RESUMO

Oncolytic virotherapy holds promise for cancer treatment, but the factors determining its oncolytic activity remain unclear. Neutrophil extracellular traps (NETs) are associated with cancer progression, yet their formation mechanism and role in oncolytic virotherapy remain elusive. In this study, we demonstrate that, in glioma, upregulation of IGF2BP3 enhances the expression of E3 ubiquitin protein ligase MIB1, promoting FTO degradation via the ubiquitin-proteasome pathway. This results in increased m6A-mediated CSF3 release and NET formation. Oncolytic herpes simplex virus (oHSV) stimulates IGF2BP3-induced NET formation in malignant glioma. In glioma models in female mice, a BET inhibitor enhances the oncolytic activity of oHSV by impeding IGF2BP3-induced NETosis, reinforcing virus replication through BRD4 recruitment with the CDK9/RPB-1 complex to HSV gene promoters. Our findings unveil the regulation of m6A-mediated NET formation, highlight oncolytic virus-induced NETosis as a critical checkpoint hindering oncolytic potential, and propose targeting NETosis as a strategy to overcome resistance in oncolytic virotherapy.


Assuntos
Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Feminino , Camundongos , Animais , Terapia Viral Oncolítica/métodos , Resistencia a Medicamentos Antineoplásicos , Proteínas Nucleares , Fatores de Transcrição , Glioma/genética , Simplexvirus/genética , Vírus Oncolíticos/genética
18.
Appl Biochem Biotechnol ; 196(1): 261-274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37119504

RESUMO

Replication-competent oncolytic adenovirus (TOA2) gene therapy is a recently introduced anti-tumor treatment regimen with superior results. The biodistribution studies of virus vector-based medicine seem more cautious and have been given much attention recently in terms of its quality and safety in preclinical trials. The current study determined the biodistribution and safety of a replication-competent adenovirus in different organs to predict its toxicity threshold. The present study has used TOA2, while biodistribution analysis was performed in human lung carcinoma A549-induced tumor-bearing nude mice model. Intratumoral injection was applied onto tumor-bearing mice with the adenovirus (3×1010 VP per mouse). Mice were sacrificed at the end of the experiment and the organs were dissected. Biodistribution analysis was done with complete hexon gene detection in each organ using quantitative real-time polymerase chain reaction (qRT-PCR). The biodistribution and concentration profiles showed that the TOA2 is well distributed in the entire tumor tissue. After dose 3 at day 11, the concentration of the virus has increased in the tumor tissue from 2240.54 (± 01.69) copies/100 ng genome to 13,120.28 (± 88.21) copies/100 ng genome on the 18th day, which eventually approached 336.45 (± 23.41) copies/100ng genome on the day 36. On the contrary, the concentration of the same decreased in the order of the liver, kidney, spleen, lung, and heart over time but no distributional traces in gonads. But the concentration found decreased dramatically in blood and other organs, while at the end of the experiment no detectable distribution was seen besides tumor tissue. The study confirms that adenovirus-based tumor therapy using conditionally replicating competent oncolytic TOA2 exhibited great efficiency with no toxicity at all.


Assuntos
Carcinoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Animais , Camundongos , Terapia Viral Oncolítica/métodos , Camundongos Nus , Distribuição Tecidual , Adenoviridae/genética , Vetores Genéticos/genética , Carcinoma/genética , Pulmão , Genes Neoplásicos , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Replicação Viral
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166962, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37984801

RESUMO

Oncolytic viruses (OVs) are emerging as therapeutically relevant anticancer agents as contemporary immunotherapy gains traction. Furthermore, OVs are an ideal platform for genetic modification to express therapeutic transgenes. Bispecific T cell engagers (BiTEs) can redirect T cells to tumor cells, resulting in targeted cytotoxicity. BiTEs have demonstrated success in hematological cancers but are rarely used in solid tumors. The drawbacks of BiTEs, including inadequate delivery and on-target-off-tumor activity have limited their efficacy. Combining OVs with BiTEs is a prospective area to investigate. This combined strategy can benefit from the best qualities of both therapies while overcoming the limitations.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Linfócitos T/patologia , Terapia Viral Oncolítica/métodos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Imunoterapia/métodos
20.
J Neurosurg ; 140(2): 319-327, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877961

RESUMO

Oncolytic viral therapy is quickly emerging as a promising subset of immunotherapy, which theoretically can target tumor cells while sparing surrounding healthy cells by harnessing the replication machinery of viruses with tropism for tumor cells, resulting in direct oncolysis, and by transforming immunologically "cold" tumor into areas that elicit the host's immune response. This review provides an overview of oncolytic viral therapy until the present day, starting with the original concept in 1912. The general mechanism of oncolytic viruses (OVs) depends on selectively integrating them into tumor cells based on genetic engineering of viral genomic material, inducing oncolysis and eliciting the host's innate immune response. Moreover, a major component of oncolytic viral therapy has been herpes simplex virus, with talimogene laherparepvec being the only FDA-approved oncolytic viral therapy for the treatment of melanomas. This review explores the characteristics, advantages, disadvantages, and therapeutic uses of several DNA and RNA viral families. A snapshot of the oncolytic viral treatments used in the most recent and advanced clinical trials is also provided. Lastly, the challenges of implementing oncolytic viral therapy are explored, both at a molecular and clinical level, with a highlight of promising future directions. In particular, the lack of an optimal delivery method based on tumor type for oncolytic viral therapy poses a significant obstacle, even in clinical studies. Intrathecal continuous delivery of OVs is a promising prospect, potentially by adapting the novel continuous irrigation and drainage IRRAflow catheter. Further exploration and testing of the IRRAflow catheter should be undertaken.


Assuntos
Melanoma , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Terapia Viral Oncolítica/métodos , Melanoma/patologia , Vírus Oncolíticos/genética , Neoplasias/terapia , Imunoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...